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Abstract 

We propose an HMM Trajectory Tiling (HTT) approach to 

high quality TTS, which is our entry to Blizzard Challenge 

2010. In HTT, first refined HMM is trained with the Minimum 

Generation Error (MGE) criterion; then trajectory generated 

by the refined HMM is to guide the search for finding the 

closest waveform segment “tiles” in synthesis. Normalized 

distances between HMM trajectory and those of the waveform 

unit candidates are used for selecting final candidates in a unit 

sausage (lattice). Normalized cross-correlation, a good 

concatenation measure for its high relevance to spectral 

similarity, phase continuity and concatenation time instants, is 

used for finding the best unit sequence in the sausage. The 

sequence serves as the best segment tiles to closely follow the 

HMM trajectory guide.  Tested in four tasks, {EH1, EH2, 

MH1 and MH2}, of Blizzard Challenge 2010, the new HTT 

approach delivers high quality, natural sounding TTS speech 

without sacrificing high intelligibility. Subjectively, they are 

confirmed by naturalness and intelligibility listening test 

scores.  

 

Index Terms: speech synthesis, unit selection, trajectory 

tiling, Blizzard Challenge 

1. Introduction 

Corpus-based TTS has significantly improved the voice 

quality of synthesized speech in past decades. The state-of-the-

art, corpus-based speech synthesis systems can roughly be put 

into two categories: unit selection based waveform 

concatenation and hidden Markov models (HMMs) based 

parametric synthesis. Unit-selection based approach [1] can 

produce natural-sounding speech with occasional glitches or 

artifacts, particularly with a smaller database. The waveform 

concatenation synthesis has a large footprint and usually is 

difficult to modify its voice characteristics. Compared with the 

unit selection, waveform concatenation based TTS, HMM-

based synthesis [2, 3] is parameterized in a source-filter model 

and statistically trained. The speech generated by the HMMs is 

fairly smooth and exhibits no concatenation glitches and the 

segmental or supra-segmental trajectories can be modified 

rather flexibly. However, limited by its source-filter 

assumption, the HMM-based TTS still carries an intrinsic, 

hiss-buzz vocoding flavor which makes it difficult to compete 

with the waveform concatenation-based TTS in terms of 

naturalness. 

Over the last ten years, a hybrid speech synthesis approach, 

which combines parametric model based HMM and waveform 

concatenation-based unit selection approaches, has become 

more popular. On the one hand, HMMs can insure the 

smoothness and stability of generated trajectories which can 

guide unit selection to match their spectrum, pitch and 

duration information [4-9]. A probabilistic criterion of 

likelihood is used in selecting units for concatenation [4]. 

Additionally, Kullback-Leibler divergence (KLD) between 

target and candidate phone-based HMMs [4,8] and the HMM 

generated parameter trajectories from HMMs are used to 

select the potential candidates [5,6]. The units for 

concatenation can be 5ms frame, HMM state, half-phone, 

phone, diphone and non-uniform units. An in-depth review is 

given by Zen et al [10]. On the other hand, unit selection based 

approach can also improve the quality of HMM-based  

synthesis by employing stable regions of natural units [11] and 

using the optimal rich context model sequences [12] to 

alleviate or eliminate the sound muffling caused by overly 

smoothed HMM parameters. 

Recently, we improve our TTS in both two fronts: HMM 

and unit selection based approaches. In HMM, the criterion of 

minimum generation error (MGE) [13] is used to improve 

HMMs trained by the conventional maximum likelihood (ML) 

criterion. The generation error in synthesis are first tried in 

Euclidean distance between generated line spectral pairs (LSPs) 

and those from original training data, and later extended to log 

spectral distortion (LSD). The state alignments of HMM 

generated trajectories are refined simultaneously with the 

spectral HMM parameters. We also use a minimum error for 

improving v/u error in F0 generation, in which the posterior 

probabilities of voiced and unvoiced states are accumulated 

for finding the optimal v/u switching points in a state [14]. In 

the unit-selection, we proposed a rich-context unit selection 

(RUS) approach to high quality TTS [8]. It adopts a prune-

and-search procedure, where KLD is used to select potential 

unit candidates and normalized cross-correlation is used as the 

final objective measure to search for the optimal unit path [8]. 

Experimental results show that the voice quality of 

synthesized speech is significantly improved in comparing 

with the conventional speech synthesis based on either one of 

two major approaches. 

Unit-selection and HMM-based approaches have their own 

pros and cons. The hybrid approach can combine the strength 

of these two approaches by: 1) generating a better trajectory 

by refining HMM parameters; 2) rendering more natural 

sounding speech by selecting the most appropriate waveform 

segments to tile (approximate) the generated trajectory.  In this 

paper, we describe our Blizzard Challenge 2010 entry: an 

HMM trajectory tiling (HTT) based approach to high quality 

speech synthesis. The feature parameter trajectories generated 

by the improved HMMs trained in MGE are used to guide 

waveform unit selection. The maximum cross-correlation, a 

good concatenation criterion for preserving spectral similarity, 

phase continuity and finding the best connecting time instants, 

is used to search optimal waveform units for concatenation. 

The rest of paper is organized as follows. In Section 2, we 

introduce our HTT based approach to high quality speech 

synthesis. The Blizzard Challenge 2010 tasks, evaluation 

results and analysis are presented in Section 3. We draw our 

conclusions in Section 4. 



2. HMM Trajectory Tiling 

The schematic diagram of HMM trajectory tiling (HTT) based 

speech synthesis is shown in Fig. 1. In the training stage, 

HMM parameters are first trained and then refined for their 

capability of synthesizing training sentence trajectories in 

minimum generation error. In the synthesis stage, parameter 

trajectories are firstly generated for constructing a unit 

sausage; then a best unit path is searched in the sausage; 

finally the optimal waveform units are concatenated to output 

speech. The detailed description is given in the following 

subsections. 
 

 

Figure 1: Schematic diagram of HMM trajectory tiling 

based speech synthesis. 

2.1. HMM Parameter Trajectory Generation 

In HMM-based TTS training, spectral envelope, fundamental 

frequency, and duration are modeled simultaneously by the 

corresponding HMMs [2]. In synthesis, for a given text, 

speech parameter trajectories are generated by the trained 

HMMs in the maximum likelihood (ML) sense with the 

dynamic (“delta” and “delta-delta”) feature constraints [3]. 

Speech waveform is finally synthesized from the generated 

spectral and excitation parameters via the source-filter based 

production model.  

We use line spectrum pair (LSP) [15] as spectral feature in 

training HMM. LSP parameters have good interpolation 

property and correlate well with “formants” or spectral peaks. 

It is also beneficial that perturbation of an LSP parameter is 

only localized in a nearby frequency region, i.e., perturbing an 

LSP only affects the LPC spectrum in the neighborhood.   

After the ML-based HMM training, the minimum 

generation error (MGE) training is adopted to optimize HMMs 

parameters. It adjusts HMM parameters trained by the 

conventional EM algorithm to minimize the generation error 

between synthesized and original parameter trajectories of the 

training data [13]. The state alignments of HMMs are also 

refined simultaneously together with the LSP parameters.  

For a given text sequence, speech parameter trajectories are 

firstly generated from well trained HMMs by the conventional 

approach, then formant sharpening is used to reduce the over-

smoothing problem of HMMs and to improve the synthesized 

speech quality. To avoid voiced/unvoiced (v/u) generation 

errors caused by pitch tracking errors and corresponding 

flawed v/u decisions, F0 generation is improved by a 

minimum v/u error approach [14].  

2.2. Unit Sausage (Lattice) Construction 

The distance between the parameter trajectories generated 

from HMMs and original units is used to select potential units 

for constructing a unit sausage (lattice). The features we used 

for HMMs training are LSP, gain and F0.  The distances of 

these three features per frame are defined by 
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where the absolute value of F0 and gain difference in log 

domain between target frame F0t , Gt and candidate frame F0c , 

Gc are computed, respectively. It is an intrinsic property of 

LSP that clustering of two or more LSPs creates a local 

spectral peak and the proximity of clustered LSPs determines 

its bandwidth. Therefore, the distance between adjacent LSPs 

is more critical than the absolute value of individual LSP. The 

inverse harmonic mean weighting (IHMW) function [16]  used 

for vector quantization in speech coding or directly applied to 

spectral parameter modeling and generation [17]. We compute 

the distortion of LSP by a weighted root mean square (RMS) 

between I-th order LSP vectors of the target frame    

              and a candidate frame                   , 

defined in Eq. 3, where wi is the weight for i-th order LSP and 

defined in Eq. 4.  

The distance between target unit ut and candidate unit uc in 

the corpus is defined in Eq. 5, where    is the mean distance of 

constituting frames. Generally, different weights need to be 

assigned to different feature distances due to their dynamic 

range difference. To avoid the weight tuning, we normalize the 

distances of all features to a standard normal distribution with 

zero mean and a variance of one and the resultant normalized 

distance is  

 

                                              
 

In order to generate a compact sausage, we employ three 

pruning techniques: 1) Context pruning allows only unit 

hypotheses with same label as target; 2) Beam pruning retains 

only unit hypotheses within a preset distance to the best unit 

hypothesis; 3) Histogram pruning limits the number of 

surviving unit hypotheses to a maximum number. 

2.3. Normalized Cross-Correlation (NCC) based 

Search in Sausage and Concatenation 

Normalized Cross-Correlation (NCC) is used as the objective 

measure of concatenation for searching the optimal unit path 

that generates the best unit sequence [8].  Fig 2 illustrates 

maximum NCC based waveform search and concatenation in 

HTT based speech synthesis. Given two waveform units: the 

front unit Wf and the back unit Wb , the window length L used 

for computing NCC is placed at the end of Wf  and the 

beginning of Wb. We set the offset to be within the range of 

[−L/2, L/2], so that Wb is shifted in this range to find the 

maximum NCC. The best connecting time instant which 

matches spectral similarity and preserve phase continuity is 

then found by finding the offset which maximizes NCC. As a 

result, the smoothest waveform concatenation is achieved at 

this best concatenation instant of offset. 

At each potential concatenation point of each waveform unit 

pair in the sausage, we first calculate the maximum NCC and 



the corresponding time (sample) offset. Then, the unit 

sequence that yields the maximal accumulated cross-

correlation is chosen as the optimal path. This is obtained by 

using dynamic programming-based Viterbi algorithm in the 

sausage. Finally, adjacent waveform units along the optimal 

path are shifted by the best offset and concatenated with 

triangular cross-fading. 
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Figure 2: An illustration of maximum NCC based 

waveform search and concatenation in HTT based speech 

synthesis. 

2.4. Flexible Units for Concatenation 

In general, the longer the units are used, the less concatenation 

points are needed and the higher the voice quality. However, 

the corpus is usually not large enough to provide adequate 

longer units. To alleviate this problem, our HMM trajectory 

tiling (HTT) approach provides flexible units for 

concatenation. For a given target unit, HTT can select unit 

hypotheses with the same length for concatenation. If some 

target units are too long to find the better potential candidates 

or have no matched hypotheses after pruning in the corpus, it 

can back off to shorter unit. According to our informal 

perception test, 5ms or state based unit for small (e.g. one 

hour) corpus, state or half-phone for medium (e.g. 4~6 hours) 

corpus, and phone or diphone for large (e.g. 8~10 hours) 

corpus are appropriate. 

3. Blizzard Challenge 2010 Evaluation 

3.1. Tasks 

The Blizzard Challenge was hold annually to evaluate corpus-

based speech synthesis on common databases [18]. Each 

participant need take the released speech data, build synthesis 

system, and generate a given set of testing sentences. All 

synthesized testing sentences from all participants are 

evaluated by extensive listening test. This year, we 

participated in two British English tasks and two Mandarin 

Chinese tasks as following, 

 Hub task EH1: 5 hour (4000 utterances) ‘rjs’ database 

spoken by a male professional speaker with RP accent 

and supplied by Phonetic Arts.  

 Hub task EH2: 1 hour (1000 utterances) subset of the 

„Roger’database spoken by a male speaker with RP 

accent and provided by the University of Edinburgh. 

 Hub task MH1: 9 hour (6000 utterances) database 

supplied by the Chinese Academy of Sciences.  

 Hub task MH2: 1 hour (800 utterances) subset of the 

MH1 data. 

3.2. System Setup 

Speech signals of all databases are sampled at 16 kHz, 

windowed by a 25-ms window with a 5-ms shift, and the 40th 

order LPC coefficients are transformed into static LSPs and 

their dynamic counterparts. Five-state, left-to-right HMM 

phone models, where each state is modeled with a single 

Gaussian, diagonal covariance output distribution, are adopted. 

The phonetic and prosodic contexts are used as the question 

set in growing a decision HMM tree for state clustering. 

Standard Festival labels (full-context labels) produced by the 

University of Edinburgh are used for both British English 

tasks. The labels of database in EH2 were hand-corrected by 

iFLYTEK. We use our own system [17] to automatically 

generate labels for both Mandarin Chinese Tasks.    

As mentioned in Section 2, decision tree-tied HMMs are 

trained by conventional ML criterion and optimized by MGE 

training, then generated parameters are used to select potential 

candidates for unit sausage construction, finally a best unit 

path is searched for waveform concatenation. Since the sizes 

of databases in four tasks are rather different, we use half-

phone for EH1, state for EH2 and MH2, and phone for MH1 

as units for concatenation, respectively. 

3.3. Evaluation Results and Analysis 

There are three performance evaluation metrics: naturalness, 

intelligibility and similarity.  Naturalness and similarity are 5-

pints mean opinion scores (MOS) in term of the naturalness of 

synthesized sentences and similarity with original speaker.  

The score 5 is the best while the 1 is the worst. The 

intelligibility is measured by dictation results for synthesized 

semantically unpredictable sentences.  English is measured by 

word error rate (WER) while Chinese is measured by character 

error rate (CER).  

Our entry is represented by letter J in all result Figures.  

System A is natural speech; System B is a Festival Benchmark 

system: this is a standard Festival unit-selection voice built 

using the same method as used in the CSTR entry to Blizzard 

2007; System C is an HTS_2005 Benchmark system with: this 

is a standard speaker-dependent HMM-based voice, built 

using a similar method to the HTS entry to Blizzard 2005. 

The similarity, naturalness and intelligibility scores of EH1 

task for all systems by all listeners are shown in Figs 3, 4 and 

5. Our system achieved the second best on both similarity and 

naturalness and the best on intelligibility. The intelligibility 

score in Fig 5 shows the word error rate (WER) of our system 

is 15%, which is slightly better than 16% of the second best 

system R. The significance test at 1% level indicates that both 

our system and R system have no significant difference 

compared with natural speech A. In general, HMM-based 

approach achieves the best intelligibility among all TTS 

systems. Our new HTT approach can synthesize high quality 

speech without sacrificing its intelligibility.  
 

 
Figure 3: The similarity score of EH1 task for all systems by 

all listeners. Our entry is represented by letter J. 



 
 

Figure 4: The naturalness score (MOS) of EH1 task for all 

systems by all listeners. Our entry is represented by letter J. 
 

 
 

Figure 5: The intelligibility score (WER) of EH1 task for all 

systems by all listeners. Our entry is represented by letter J. 

 

The similarity, naturalness and intelligibility scores of MH1 

task for all systems by all listeners are shown in Figs 6, 7 and 

8. The mean similarity score of our system is the best one, i.e., 

our score is 3.9 and significantly higher than the second best  

3.4 of system H. Our system, system C and system R all 

achieved 3.9 of the mean naturalness scores and tied for the 

first place. Both our system and system R perform character 

error rate (CER) 22% of intelligibility score, which is slightly 

worse than 21% of the best system C. It is a little bit 

intractable to compare our system with system C since we use 

our own automatic labeling system, which is rather different 

from system C. 

 

 
Figure 6: The similarity score of MH1 task for all systems by 

all listeners. Our entry is represented by letter J. 

 

 
Figure 7: The naturalness score (MOS) of MH1 task for all 

systems by all listeners. Our entry is represented by letter J. 

 

 
 

Figure 8: The intelligibility score (CER) of MH1 task for all 

systems by all listeners. Our entry is represented by letter J. 

 

For the small size database tasks: EH2 and MH2, the 

performance evaluation metrics of our systems are all within 

top 3. The corresponding figures are shown in Appendix. 

4. Conclusions 

In this paper, we present our Blizzard Challenge 2010 entry: 

an HMM Trajectory Tiling (HTT) approach to high quality 

speech synthesis. The parameter trajectories are first generated 

by refined HMMs which are trained with MGE. The HMM 

trajectory is then used to guide waveform unit selection to 

synthesize output speech. When tested in four tasks, {EH1, 

EH2, MH1, MH2}, of the Blizzard Challenge 2010, the output 

speech rendered by HTT sounds both natural and highly 

intelligible. 
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